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A strategy for data acquisition from a very distant spacecraft is presented, when the

system performance can be severely degraded by the Earth'’s weather due to the high
microwave frequency being used. Two cases are considered, one in which there is a
certain minimum data rate to be maintained and one in which there isn’t. The goal is to
maximize expected data return, where we assume that there is always new data, or a
backlog of old data, that can be sent if conditions are favorable. When there is no
minimum rate to be maintained, the optimum Strategy is the greedy strategy, which
always transmits at that single rate which maximizes the expected data returned. If there
is a minimum data rate that we strive to maintain even in adverse conditions, the
optimum Sstrategy transmits simultaneously at the minimum or base data rate and at a
bonus data rate. We use a coding system designed for the bandwidth-constrained degraded
broadcast channel. The optimum version of this system can, under realistic assumptions,
save on the order of 5 dB over the conservative strategy of just transmitting at a single

lower data rate.

l. Introduction

The Solar System Exploration Program uses X-band
(8.5 GHz) to get a narrow antenna beam from spacecraft to
Earth and so to maintain a high data rate in clear weather. And
someday K, -band (32 GHz) may be used. When reception is
limited to receivers buried in the Earth’s atmosphere, we must
suffer weather effects which reduce the data rate from the
value that we can maintain in clear dry weather. How can we
best cope with this?

We assume a spacecraft so distant that the data rate cannot
be changed to take account of the actual weather at a receiving
station. At most, the spacecraft knows a statistical prediction
of the weather that will be experienced at reception on Earth,
and chooses a data rate or data rates based on this. In this
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paper, we also assume that there are always data to be sent,
either because new data are being acquired or because there is
a buffer which stores data until the data can be sent. In the
latter case, a feedback channel is involved.

The goal in this paper is to maximize the total expected
data returned during a mission or portion of a mission. This is
the time integral of the total data rate chosen for transmission
times the probability that reception could be carried out. For,
we assume Shannon link coding, in which either the signal-to-
noise ratio can sustain the particular code chosen, or the word
and bit error probability are substantial and so the decoded
data must be discarded. '

Here we have a risk-balancing problem. If we choose too
high a data rate, we risk losing all, but if we choose too low,




we risk not getting as much out of the mission as we could
have. We will consider the possibility of using simultaneous
data rates, in an optimum joint coding scheme from the theory

of broadcast channels. We shall also point out that mixed

strategies, ones in which we randomly choose data rates,
should not be used if the criterion is maximizing the expected
data return, as it is here. '

We may also be required to maintain a certain minimum
data rate with high probability such as 0.99, for example,
spacecraft health data and minimal imaging coverage. We call
this the base data rate. The additional data that we may be
able to receive is called bonus data.

Here there are three possibilities. The weather may turn out
good enough to support the bonus data rate and the base data
rate. Or the weather may not be that good, but may still
support the base data rate. Finally, the weather may be so bad
that we receive nothing. We still wish to maximize the
expected total data returned. But we have the constraint that
the probability that we receive nothing (this is the probability
that the base data cannot be received) be held to a given small
probability. This approach will be contrasted with the more
traditional approach of using a single data rate only, but
putting in a “weather pad” so that the chosen single data rate
can be received with acceptably high probability.

Il. No Minimum Rate Required

Here we define p(x) as the probability density that the
weather is good enough to support data ratex. If the
spacecraft were close enough to Earth, p(x) would be a delta
function because we know what the weather is. For a distant
spacecraft, p(x) represents the residual uncertainty after our

_best weather prediction is made. The density p(x) is assumed
known.

We will first choose a single rate deterministically depend-
ing on p. Later we will show that multiple rate strategies
should not be considered here. This means no mixed strategies
and no strategies employing more than one rate at once. But,
if we need to retain a certain minimum rate with a high
probability, we shall see in the next section that a dual-rate
system should be employed. Here we ask, at what data rate x,
should we choose to transmit so as to maximize the expected
data return?

We receive X, bits per second with probability P(xg) given
by

P(x,) = f ™ px) dx (1)
x=x0 .

Here x,, . is the data rate supportable in clear dry weather.
We receive x bits/sec with probability P(x,), and O bits/sec
with probability 1 - P(x,). This is because if the weather we
actually have will not support the data rate that was

transmitted, then according to Shannon we get nothing.

What is the expected data rate E(x,)? It is just
E(x,) = x Plx,) )

according to what we just said. So we want to choose an x to
maximize (2). This is the best we can do. In reasonable cases,
we can use differentiation to maximize (2). The condition for
a maximum is

Pxg) = x,plxy) = 0 &)

For example, let p(x) be given by

p(x) = ) G e ™ G ~ X)) for 0<x<x,__,

max

3
_3 Xo 1 *o
max max

This is the quadratic density function having its peak at x,, .,
and having the value 0 at x = 0. Equation (3) becomes

3 X9 1 *o ? _ 3 %o X g
=|1- —5 1- =3 1- {1- :
2 xmax xmax xmax xma,x

'
ro, o a

so that

We let u=1-(xy/x,,,.) and solve this equation numerically
to find u = 0.459. Or, L

X
0 -0.541

max
The maximum expected data return is then

E(x,) = xOP(xO) = 0346 x,

ax
Suppose now that we were prescient and knew the actual

weather x in advance. We would transmit exactly at the rate x.
The expected data return E with prescience is then

E = f e xp(x) dx “)

x=0
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This of course must be greater than the value of £(x,) for the
maximizing x,. But, how much greater?

In the example, we can find £ The result is

E=(5/8)x

max
The gain in expected data return will be

E (5/8) xmax

Fxg) = 0346 %, _ = 1.806 = 2.6 dB

This is equivalent to a 2.6-dB power increase, at least if we
have an infinite-bandwidth gaussian channel at our disposal.
We lose 2.6 dB by not being able to predict the weather
perfectly in this example, We lose in two ways. Some of the
time we could have gotten rates higher than x, when we only
got x,, and some of the time we could have gotten something
(less than x ), instead of getting nothing.

How large can the loss be for not being able to predict the
future perfectly? Appendix A shows that we can lose arbi-
trarily much. This is not surprising. Appendix A also shows
that if the density p(x) is nondecreasing in the interval of rates
[0, x,,,, ], as is sometimes reasonable, then there is a maxi-
mum loss. It is 3 dB, attained only for the uniform density on
[0, x,,,..]. For every other nondecreasing density, the loss
will be less than 3 dB. The 2.6-dB loss in the quadratic density
example is near the maximum possible for a nondecreasing
density function.

Let us close this section by turning to another matter. We
want to show that we do not need to consider multiple rates,
either simultaneously or as part of a single-rate mixed strategy
involving several rates.

It is easy to rule out mixed strategies. For, if we choose
rates x; with probability p;, the expected data return is £({p;})
given by

E({p;} = > p; * x; P(x;) OR
i

We may as well always choose an x,, say x,.', maximizing x;
P(x;) over all i. This will yield a larger E({p,}) (unless all x, -
P(x;) with P; # 0 are equal). Mixed strategies do not pay.

Why should we not send data simultaneously at more than
one rate if there is no minimum data rate required? We might
think to do this to salvage something even if the weather turns
out worse than we expected. Suppose we send data simultane-
ously at rates x;, 1 <i<n, We will use as our simultaneous
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coding scheme the degraded gaussian broadcast channel model
of Ref. 1. Here increasing index means worse weather.

We see that all rates x, with j>=i can be réceived if
weather 7 holds at time of receipt. We shall let u; > x; be the
single-channel rate that could have been supported with
weather #. Here the data x, are disjoint, so that we really do get
credited for

2%

>i

when weather i occurs. If we want to maximize expected data
return, there is no reason to repeat data on separate channels.

Actually, the total data returned if weather i occurs cannot
exceed the data that would have been returned had we put all
our power into a single channel:

Zx]. <u, 6)

j=i

This is because u; is the channel capacity when weather §
occurs. Reference 1 shows that the inequality in (6) is strict
unless the bandwidth is infinite.

The probability that the weather is at least as good as { is
given by P(u;) from Eq. (1). The expected data returned when
we use the multiple rates is then given by say E;(x,,
Xg,...5X,), Where '

E (), %,,...,x) = D x,Pu) ©)
i=1

This is because the probability that x; can be received is the
probability P(u;) that the weather is at least as good as i.

Because increasing / means worse weather,
Plu) <Puy)<...<Pu,)

So, Eq. (7) can be converted into an inequality:

n
E ()%, s X, )<PW,) D% ®)
i=1




In view of (6) with i = 1, (8) becomes

El(xl,xz,...,xn)<un1’(un) = E(u;) )

The right-hand side of (9) is, by (2), the expected data return
if we use the single rate u,,. This means we assume the worst
weather and use all our power with the single rate u,, tailored
for that weather. This shows that single rates are best when
there is no minimum data rate to be maintained.

. Minimum Rate Required

" Suppose there is a minimum or base data rate x, that we
strive to receive even under adverse conditions. This means
that for some small ¢ >0, we want the probability of not
being able to receive at least this base data to be e or less.
Typically, ¢ may be 0.05 or 0.01, but may even be 0. This is
because there generally is a worst weather loss. For example,
at X-band (8.5 GHz), the loss due to attenuation and the
resulting noise temperature increase is at worst 10 dB or so
into a roughly 30K receiving system. We should and do
assume that € and x, are such that, in weather corresponding
to probability €, if we put all our power into a single rate, a
rate x, can in fact be supported. We call x,, the base data rate,
and the data to be sent at that rate is called base data.

As in Section II, we need only consider the following
strategies. We choose a single other level, say 1, 1 =n >e¢, of
weather degradation (not precluding that it be the same as
e-weather). We transmit at the maximum rate x, such that in
n-weather, the simultaneous rates (x,, x,) can be supported.
We call x, the bonus data rate, and the data communicated by
it bonus data.

Here the problem is to choose x, (or alternatively n, for x,
and n determine each other when x, and e are given) so as to
maximize the total expected data return, base and bonus.
There are three possibilities. The weather may be worse than
e-weather, and we receive nothing. The weather may be at
least as good as e-weather, but worse than n-weather. We then
receive only base data. Finally, the weather may be at least as
good as n-weather. We then receive base and bonus data,

Let us use broadcast channel theory from, for example,
Ref. 1. We let B be the bandwidth available for signalling. B
may be infinite, but the notation assumes that B is finite. Also
let P be the total available received signal power. Let N, be the
receiver noise power spectral density corresponding to u-
weather, the weather that determines x,. Let N, = N, be the
noise density corresponding to e-weather. Then from Ref. 1

the allowable simultaneous rates (x,, x,) at which we can
reliably communicate are given by

al
1 = Blogz (1+]Tf—1§)

aP
, =B log2 (1+ozP+NZB)

=
1

(10)

=
1

Here « is a parameter between O and 1, and &= 1 - a. Because
N, is given (it is determined by €), and x, is a given
requirement, « i3 determined from the second equation of
(10). We note that as B— oo, (10) just becomes the time-
division or frequency-division multiplexing formula. We shall
not explore this here. Reference 2 considered this case when
the weather distribution consisted of a finite number of delta
functions.

The meaning of (10) is that we devote a fraction « of the
power to the bonus data at rate x, , ignoring the base data. We
code for the resulting gaussian channel of signal power aP,
bandwidth B, and noise density V,. The codewords for the
base data at rate x, are assigned the remaining average power,
which is &P. These ‘“base” codewords are centered as a
“cloud” around the “bonus” codewords. The bonus code-
words look like Gaussian noise of power «P to a receiver
designed for e-weather. We cannot decode them, and they add
oP to the N,B noise power denominator of the second
equation of (10). But, if the weather is at least as good as
n-weather, we can reliably decode the bonus codewords,
remove them as noise by subtraction, and certainly then
decode the base codewords. In this way, we see that we can do
at least as well as (10), and Ref. 1 shows we can do no better.
Our assumption that we can at least get rate x, in e-weather if
we let x, be 0 means that these equations are not contradic-
tory — no log,’s of negative numbers.

What is o? The second equation of (10) becomes

x2/B - aP

2 1+_aP+N23

from which we may derive
N,B —x. /B
T = <1+—2—) (1-272"%)
P
(11)
N.B —x_IB
a=1~- (1+——; ) (1-2 772
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and,
-x,/B
oP = P-(P+N,B)(1-2 %) (12)

Finally, the supportable bonus rate x, is given in terms of V,
as

P-(P+N,B)(1-2 *2/8y
X, = Blog, \1+ N.B (13)
Equation (13) allows us to translate the probability distribu-
tion of the weather, which we may think of as a distribution
on N, into a probability distribution on the attainable bonus
data rate x, .

We now observe that the only rate varying is x, , because x,
is fixed. So as far as optimization problems go, this is really
the same problem as in the preceding section. We have a
probability density p(x,) on rates x,, and want to maximize
the total expected bonus data returned. For, by our assump-
tions, the expected base data returned will be (1 - €) x,, no
matter what x; we choose. (This really assumes some
continuity in the density function p, but we shall say no more
about this.)

Let us now determine the maximum penalty due to lack of
prescience, as we did in the previous section when no base data
was required. We shall again want to assume that the
probability density p(x,) on the achievable bonus data rate x,
is nondecreasing in x,. However, since we really would be
given a probability density #(V,) on the noise density /V, that
actually occurs, this condition may be hard to check.
Appendix B shows that if N2#(NV) is nonincreasing in its
interval of definition [N, ;, N, ], then the density p(x,)
will indeed be nondecreasing in its interval of definition
[0, x

max] *

Under this mild condition, the previous section shows that
the rate penalty in x, for not being prescient is at most 3 dB.
What is this as a power penalty? This will help tell us how hard
we should try to reduce the weather uncertainty.

We are really asking, by how much does the received
power P have to increase the double x;? We still must have
base rate x, achieved with probability 1 - e. So, Eq.(10)
holds, and (13) holds, with 2x, replacing x, and say P’
replacing P. Starting at various forms of (13), we quickly
realize that under the proper circumstances, doubling x, can
mean an arbitrarily large increase ratio for P, or an arbitrarily
many dB power penalty for not being prescient.
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But, let us assume, as is reasonable, that x, /B in bits/cycle
is not too large before the prescience doubling. This is
probably a reasonable implementation constraint for most
coding schemes that would be adopted. Let us agree that x,
was equal to B before the doubling. What happens to P now?

Equation (13) can be written

_ N - '
Py = L2 (1) (19
1 1

Here, of course, N, >N,. If x,/B =1, so that "1/ _ = 1,
we will have 22*¥1/8 - 1 =22 - 1 =3, From (14), we need to
at most triple P to double x,, when x, /B originaily equalled 1.
There is never more than a 4.8 dB power penalty for lack of
prescience when we have a base data rate x,, to maintain with
probability 1- €, if the bonus rate x, does not exceed the
available bandwidth B.

However, there is a more important question we can ask.
What do we gain by the optimal two-rate base and bonus
strategy over the more traditional approach of using a single
rate? The single rate we should compare to is the one we get if
we assume noise density corresponding to e-weather, the noise
density N, . For, this is the only way we can guarantee that we
receive the base data in a single-rate strategy. The next section
considers the gain of the optimal two-rate strategy over the
traditional one-rate strategy.

IV. Tradition Does Not Pay

The traditional single-rate strategy provides a data rate x,
at least equal to x,, because we put all our power into a single
channel. Because the noise density V, is the one for e-weather,
x, will be given by

P
x, = Blog, (1 + .7V_2§) | (15)

We obtain x, with probability 1 - ¢, and no data at all with
probability e.

The expected total data returned by the traditional strategy
will be E, which is given by

| E = (1-¢x, (16)




With the optimal dual-rate strategy, the total data return opt
is given by

E_'opt = Jrcmzx x P )+(1-¢€)x, a7n
1

Here‘P(x 1) is the probability that the weather is good enough
to support the bonus rate x, while the second channel is
providing the base rate x,.

We may ask, how large can S = E,,,/E; be? This of course
depends on the weather density r(V;). But, it will always
exceed 1 by definition of “optimum.”

It is easy to show that E,,/E can be as large as we please
if we pick the right parameters. For this, we should have a
substantial probability, say around 1/2, that the noise IV, is
much smaller than &,. But what if there is a minimum noise
N smin ? What is the largest that the data rate gain = E,,,/E
can be in this case?

We want to choose a probability distribution on the noise
to maximize the data rate gain S. From (16) and (17), we want
to maximize

S = ——l—maxx P(x )+iz_ (18)
xsxl ! ! xS

(1-¢

by choosing the distribution of receiver noise. Here € and x,
are given and

or

o

r(V)dnN

2

(19)

1
m

N

Finally, x is given according to Shannon by (15).

From (13), we find x, in terms of N, and N,. The
probability that the bonus data can be received is given by

Ny
Px)) = f r(N)dN
0

Since x, is also given, the only term varying in (18) is max
x,PCx,). 1

How can we maximize this maximum on x, by the choice
of the probability distribution on the noise density? Here x, is
considered fixed. So we should maximize P(x,). Since the
probability that base data cannot be received is €, P(x,) can be
arbitrarily close to 1 - ¢. We have to say “arbitrarily close”
because we need to keep some probability just to the left of
N, to “lock in” the base rate x,.

The max of x P(x,), which is really a sup, is then
(1-€)x,. By arranging for a near-delta function of prob-
ability almost 1 - € at (just to the left of) V,, we can indeed
arrange that this x;, be the optimum for the resulting
distribution. This distribution, while somewhat artificial, is not
too out of line, for the real weather distribution may tend to
have a delta function of reasonable probability around the
minimum noise, corresponding to clear dry weather. In this
case, it also corresponds to /V, , because here N, =N, . .

We then find the maximum gain ratio § given NV, and NV,
from (18) as

X, tx,

X
§

V,,N,) = (20)

S
max

Given the base rate x,, the received power P, and the
bandwidth B, we may attempt to maximize (20) over all
possible vV, and N, with N; <N,, using (13) for x, and (15)
for x,. This is not very instructive.

However, for infinite bandwidth we can find the maximum
in (20). We could do this easily from scratch without going
through the finite-bandwidth case, but we shall take the limit
as B -» oo in the finite-bandwidth case. We define a parameter p
greater than 1 as

N2
P =N, (21)

Here p is the ratio of the noise density in e-weather to that in
clear dry weather, about 10 dB for low-noise X-band recep-
tion. Also let the parameter v less than 1 be defined as

X2
v = x—s 22)

This is the ratio of the base data rate x, to the data rate that
could be supported in e-weather if we put all our power into a
single rate x..
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From (13), for infinite bandwidth,

N
_ P 2
1 TN 2 %N (23)
From (15), we similarly have
_ P
X, = N, 2 24)
Equation (20) then becomes
P Nz
- x (- 1
N, In2 2\N,
Smax®ys V) = ~—p, N, 1n2
S ax N, =p-v(-1) (25)

We can check (25) by noting that

as Y~ 1,Smax(N1,N2)—> 1.

This means that there can be no savings in using the optimal
strategy if the link can barely support the base rate in
¢-weather. This is as must be. But if, for example, v were 1/2,
corresponding to e-weather being able to support fwice the
base rate,

=ptl
2

_ 1
Sy N,) = 03 (0= 1)

If p=5 for the given €, as may be typical of X-band for
deep-space use, we can save up to a factor of 6/2 =3 or 4.8 dB
if the e-weather link could have supported twice the base rate.
Here the probability that the noise is at least 5 times as bad as
for clear dry weather is €, Half the power is devoted to base
data, and half to bonus. The bonus rate is 5 times the base
rate. There is five times as much energy devoted to each base
bit as to each bonus bit.

In the next section, we do a more realistic case, one in
which the bandwidth is finite and in which the probability
distribution approximates the real ones that seem to occur for
X-band weather.

V. A Realistic Case

In this section, we adopt a weather model much like the
actual weather statistics for deep-space communication at
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X-band. However, the results should be used only as guidelines
and not for mission planning, because these are not actual
weather statistics.

We consider a probability distribution varying from

N, m=1lasa normalization to ¥, . = 10, corresponding to

the approximate 10 dB maximum X-band weather loss. We
shall allow a 8-function at N =1, corresponding to a positive
probability that the weather is perfectly clear and dry. Let the
§-function have probability 1- §, so that the area of the
continuous part r,(V) is 8. We shall find 8 to qualitatively
match X-band weather statistics in this example.

If we agree that a 3-dB loss (N = 2) occurs 5% of the time,
we can find § under the assumption that the continuous part
of the distribution is part of a parabola with its minimum at
N =10. Let the continuous part be ¢(10 ~ N)2, Then

10
cf (10-N)?dN = 8
N

=1

and so

Then we have for 7, (V)
r@) = 345 (10- M2
1 243
The 3-dB loss occurs with probability 0.05. Or

' 10
___IE - 2 = = .___.ﬁ 3

and
g = 0.0712,1-8 = 0.9288
The overall weather density becomes
(V) = 09288 §(V- 1) +2.930 X 1074 (10- N)® (26)

So the probability of clear weather is about 93%. This is not
contrary to experience.




We have yet to choose an ¢. Rather than setting the crite-
rion directly on e, we let it correspond to a 7-dB (factor of 5)
loss, whereby V, = 5. Or

53

10
€= f r,(N)dN = 2.930 X 107* X 3 = 00122
5

This is slightly more than 1%. We want a 98.8% probability of
getting at least the base data. One percent is lower than what is
sometimes stated as a requirement in present deep space
designs, but is probably close to the real requirement. The
only reason 1% isn’t required now is that the data rate penalty
over clear weather would be too large (7 dB) with the tradi-
tional strategy. We shall see that we can pick up almost 5 dB
of the 7 dB with the optimal dual-rate strategy.

We shall assume that the base-data-rate-to-bandwidth ratio
x,/B is 1/8, and that, if we put all the power into a single
channel at the e-weather noise density N, (=5), we could
support a data rate of 2x, =x, instead of the x, we will
actually get. Or, from the channel capacity formula (15),

_ P
2x2 = Blog2 (1+./—V_2—B)

2x,/B P P
27 = oA = S
2 ! N,B’ 2 1 N,B @7

So, P/N,B =0.1892, and, since NV, = 5, P/B =0.9460. We have
determined the power-to-bandwidth ratio P/B. If we had kept
better track of units, the dimensions would be joules/cycle (or
watts/Hz).

From (11), we can now find

_ 1 e ]
* <1+0.1892)(1 2718 = 0.522,0 = 0478

We put 52.2% of the power into the base (x,) channel, and
47.8% into the bonus (x,) channel. But, we still need to find
x, and NV, . From (10), with P/B = 0.9460, we have

(0.478) (0.9460)
Nl

x, = Blog, (1 +

- N (28)

X
L og, (1 +0.4522)
1

As an aside, we remark that, within & = 0.522, the power to
the base channel is reduced by 0.522. And, from (10), the
noise density is increased, due to bonus coding, by

(ozP+N2B

5 ) - N, = aP[B = 0.4522,

the same 0.4522 of Eq. (28). This is a percentage increase of
0.4522/N, =0.4522/5 = 0.905" = 9.0%. The noise density in
the base channel increases 9.0% due to the bonus codewords
being seen as noise by the base decoder.

The noise density increase fraction is, from (10), (11), and
(27), actually

oP P\ ~x,/B x,/B
_—= [ e— - = -
N,B (1 N2B) 2 L=2 L

It depends only on the assumed x, /B and x /B, and not on the
probability density #(V) chosen nor on e. The power devoted
to the base channel drops by a factor of 0.522 due to bonus
coding, and the noise increases by a factor of 1.0905. So, the
signal-to-noise drops by a factor of 0.522/1.09 = 0.479". This
is, of course, the drop in signal-to-noise ratio which exactly
cuts a data-rate-to-bandwidth ratio of 2 x,/B = 1/4 to one of
x,/B=1/8:

218 -1

= 0.478"%
214 -

The probability that the bonus rate can be supported if we
design it for weather producing noise density N, is say
Py(N,), where

10 (10- N,
Py(N,) = 1—[ ry@W)aN = 1- ——5—

Ny

We seek to maximize, by choice of N, the function
x; Py(Ny), or, by (28), maximize

0.4522 (10- N))?
GW,) = (In2)FYV,) = [m (1 = )] (1 —TME)

1
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The derivative G’ (V,) is

G'W,) = —— (—0.4522) <1_ (10‘N1)3>
1 (1 +o.4522) " 10240

Ny

(10- N,)?
+.[1n (1 ¥ 0"1’322)] 3) oz

1

Both terms are clearly negative in 1 <N, <10, so the maxi-
mum is at N, =1. We play for clear weather. Because the
weather is clear with probability 0.9288, this is no surprise.

From (28), we see that

X
1
— = log, (1+0.4522) = 0.5388,
xl
— Po¥,) = (0.5388) (0.9288) = 0.5004

From (17), then,

&=

PL = 0.5004+(1- ) (1/8) = 0.5004+9'2§E,
Eope = 0.6239
2% = 0.6239.

Compared with the 2 x,/B of 1/4, we have a gain of a factor
of 2.50 or 4.0 dB in total expected data rate, and a factor of
2.86 or 4.6 dB in power.

We note that the adopted optimum strategy gives a data-
rate-to-bandwidth total of 0.5388 + 0.1250 = 0.6638 with
probability 1- = 0.9288, a data-rate-to-bandwidth total of
0.1250 with probability 0.9878 ~ 0.9288 = 0.0590, and no
data with probability 0.0122. The traditional strategy would
give 0.2500 with probability 0.9878 and no data with prob-
ability 0.0122. We only get half as much data in the e=
0.0122 weather, but the enormous gain in N, = 1 (clear dry)
weather much more than makes up for this on the average.
The optimal dual-rate strategy gains a 2.5 factor increase in
expected data rate, which is equivalent, when the finite band-
width is taken into account, to a power gain of 4.6 dB.
Tradition does not pay.
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Appendix A

Penalty for Lack of Prescience

Here we answer the question raised in Section II. What is
the maximum loss in expected data return from not being able
to know what the weather will be?

If there is no restriction on p(x), the loss can be arbitrarily
large. For example, let only integer rates j=2, 3,... be
supportable. The example can be modified so that the proba-
bility distribution of rates has a continuous density and a
maximum rate. The conclusion will be the same.

Suppose the probability p; that the actual weather would
support rate j is

blﬁ

p. = , j=273...
T

Here ¢ is an irrelevant constant (actually 1/[(72/6)~ 1]. For
this weather distribution

E= g = 2 5=
j=1 =

But the expected data return £/ if we those rate i is

So the i maximizing £, which we may call i, has

E@,) <2

But the expected data return £ with prescience is £'= oo, There .

is an infinite penalty for lack of prescience. This is as
expected.

Now we ask, suppose p(x) must be nondecreasing on the
interval [0, x,,, ]. What is the largest penalty for lack of
prescience now? We may scale rates so that x,, =1. If
p(x)=1o0n [0, 1], then

1
E=fxdx=1/2
0

Also,
X Plxg) = x(1-x)

has maximum 1/4 at Xq = 1/2. For this x, £(1/2) = 1/4 and
the penalty is

EIE(1/2) = (}ﬁ) 2 = 3dB

We shall show that the 3-dB loss encountered above is the
worse case when p(x) is nondecreasing. In fact, we shall show
that if X is the mean or expected data rate given by

1
Y=f xp(x) dx
0

(which we have called £ above) then using X as the actually
chosen rate x,, never loses more than 3 dB, andlosesless unless
p(x) is the uniform density on [x,,;,, X,,.]. We note that if
X > 0, X will not be the optimum data rate to choose.

We seek to show

X

1
()T f p(x) dx)
X

when p(x) is nondecreasing on [0, 1], with equality only when
p(x) is constant on its interval of support. We want to show

' 1
f p(x) dx = 7
X

for p(x) nondecreasing. Another way to put this is that the
median X, 12 the point such that half the probability lies to
the right and half to the left, satisfies

<2

(A-1)

X<X

112 (A-2)

if p(x) is nondecreasing, with equality only when p(x) is
constant forx,,,,, Sx <Xx,,,.

Let p(X1/2) =h. We increase X for the same Xyp if we
replace the original p(x) by one which is equal to the constant
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h for b <x<X,, and equals 0 for 0 <x <b. Here the
constant b is given by

(X, -b)=1/2

12
1
b =X, Ty
Note that b = 0. For the maximum probability to the left of
Xy s the area of the rectangle with base X, 2 and height A.
This probability is exactly 1/2, so

1
heX,, >
b=X, -— >0
12" 2h

What happens to the right of X? We can increase X keeping
Xip the same by extending p(x) to the right at the constant
value # for a length long enough, to a, say, with a > 1, to make
the resulting rectangle have area 1/2 to the right of X .
Figure A-1 explains these operations.
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The resulting uniform density on [b,«] has a larger mean
than the original p(x), for probability has been pushed to the
right. However, it has the same median X ;. But the resulting
uniform distribution has mean X' equal to X , , for the mean
of a uniform distribution is also its median. The result is the
following:

X<X' =X

12 (A-3)

This provides (A-2). Note that if the original p(x) were not
uniform on its interval of support, we would have actually
increased X to X', so that X< X", This shows that the 3-dB
loss holds only for uniform p(x). So 3 dB is the worst loss
possible for a nondecreasing p(x). This loss is attained only for
uniform p(x), and we can guarantee that we don’t lose more
than 3 dB from the prescience value by choosing to transmit at
the rate X, the mean data rate we could get with prescience.

(Of course, if we choose the x,, maximizing (2), we will be able

to cut the prescience loss still further in all cases except where
X, = 0 and p(x) is uniform. But for the uniform distribution
when the prescience loss is 3 dB, x, = x m ax/2 is the best x,,.
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Fig. A-1. Flattening p(x)
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Appendix B

Condition for Nondecreasing p(x1)

Here we find a condition on the probability density r(V,)
of the noise V, that implies that the probability density p(x,)
of the bonus data rate x, is nondecreasing up to the maximum
rate x, . We referred to this condition in Section III.

Equation (13) can be written

x, = Blog, (l +ﬁ) (B-1)
1

Here

—x2/B

L=P-(P+NB)(1-2 *)

is a positive constant, positive because the rate x, is a positive
rate.

We may write

pr(X1 <x,) = pr(n, =2N,) = RWV)) (B-2)

Here X, is the random variable of rates x, n, is the random
variable of corresponding noise densities NV, and R(V,) is 1
minus the cumulative distribution of the noise random variable
n, evaluated at the particular e-weather noise V, .
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We can differentiate (B-2) with respect to x,, and use (B-1)
to differentiate NV, with respect to x, . The result is

d a’N1 d le
p(x) = @, RW)) = dx, aN, RWN)) = - al—r(Nl)
(B-3)
But, from (B-1),
dN
.1 b2fn Ly
dx, ~ dx jaN, z (N 17 1) (B-4)
(B-3) becomes
In2 L
plx,) = A (N§ 3 N1> ryv)) (B-5)

If Nf (V) is nonincreasing in N, thenV, »(V,) is all the
more nonincreasing in V. Since L/B is nonnegative, the sum
N’f rNy)+ (L/B)N, r(N,) is nonincreasing in N,;. Since
increasing noise N corresponds to a decreasing bonus rate x |,
(B-5) shows that p(x,) is nondecreasing in x, if N2 r(NV,) is
nonincreasing in NV, . (In fact, the condition on p(x, ) is almost
but not quite equivalent to the condition on r(V,).)




